The Biology of Climate Change

Introduction

Photo by billy barr
Photo by billy barr

Most climate scientists are now in agreement that earth’s climate is changing because of enormous and rapid additions of greenhouse gases, such as carbon dioxide, methane, and nitrous oxide, to the atmosphere due to the consumption patterns of humans. Predicted outcomes of this warming include rising sea levels, more extreme weather events, and changes in precipitation and temperature patterns globally, but it is less clear exactly how climate will change at any one location and even less clear how organisms and ecosystems will respond to the predicted changes.

 

07060005
A marmot family in the spring. Photo by Nickolas Waser

In the high elevations of the Rocky Mountains, snow covers the ground for most of the year – summer is short. Organisms that live here or just visit for the summer have a lot of work to do to complete their life cycle in a very short period of time. For example, marmots emerge from hibernation in late April to early May and retire to their burrows by late August to early September. In that span of time, they need to mate, raise pups, and put on enough weight to survive hibernation during the long high country winter. (They can lose up to half of their summer weight during hibernation.)

How will climate change affect organisms and ecosystems around the RMBL? Will all effects of climate change be negative or could some organisms actually benefit from the change?

The Climate of Central Colorado

“Climate is what you expect, weather is what you get.” Mark Twain

Climate can be thought of as the average weather conditions for a location. Because of high elevations in central Colorado, temperatures are cool and the thin, dry atmosphere allows relatively high levels of ultraviolet (UV) radiation to reach the surface. Highest elevations generally receive more precipitation than lower elevations with most precipitation accumulating during the winter as snow.

High elevation and extreme relief are major factors in the average climate of central Colorado, including the lab. For example, the Rocky Mountain Biological Laboratory sits at roughly 9500 feet (2920 m) above sea level (asl). The surrounding mountains are roughly 12,000 feet asl or 3000 ft (915 m) higher than the lab. Avery Peak, about 3 miles north of the lab is 12644 ft (3854 m) asl. Summer afternoon temperatures decrease about 4-5 degrees Fahrenheit for every 1000 feet of elevation gain. That means that the top of Avery Peak is usually 16 degrees Fahrenheit, or 9 degrees Celsius, cooler than down in Gothic!

Major Climate Drivers for Ecosystems around RMBL

There are two particularly important climate-related occurrences for organisms and ecological systems in the high country. The first important event is the day that snow cover is reduced to zero, the snow melt date, which as you can imagine, doesn’t happen at the same time in all locations. The snow melt date is really the beginning of the short growing season.

Another very important climate variable is the amount of water available to plants during the growing season. This variable can directly reflect the amount of precipitation received, but can also be influenced indirectly by temperature. For example, during a year with normal rainfall, plants could still be stressed by lack of soil moisture if temperatures are higher than normal, resulting in higher than normal rates of evapotranspiration and lower than normal soil moisture.

RMBL Climate Records

billy barr
billy barr

Fortunately for us, climate observations at the RMBL extend back to shortly after billy barr arrived in Gothic. Since 1974, billy has kept a running tally of temperature, precipitation, and total snow pack near his off-the-grid house north of the field station. billy also records the first day of the year that he sees local animals that hibernate, like marmots, emerge from their burrows as well as the first day he sees animals that migrate to higher elevations for the summer months, such as hummingbirds. These incredible four-decade long records from a remote sub-alpine to montane environment are invaluable to scientists that study the effects of climate change on organisms and ecosystem functioning. For more about billy barr and his observations, download a short Rocky Mountain News article here. Is a 40-year record of observations a long-term data set?

Phenology

The timing of important life cycle events, such as emergence from hibernation, is called phenology. Many behaviors change with changing environmental conditions. Because of billy’s detailed daily observations, we can ask certain questions about certain phenological events around the RMBL field station. For example, is there evidence for changing climatic conditions at the Rocky Mountain Biological Laboratory? How does the timing of life cycle events of high-country organisms change with changing environmental conditions?

Next step – learn about RMBL Phenology Research.